Stability of pressure-dependent, thermally-induced displacive transformations in bi-atomic crystals
نویسندگان
چکیده
An important property of some metallic alloys, such as NiTi, for technological applications is their coupled thermomechanical shape memory behavior. This is due to temperature-dependent first-order displacive (martensitic) transformations in which their crystal structures transform between a higher symmetry cubic phase and lower symmetry phases (rhombohedral, tetragonal, orthorhombic, or monoclinic). In a recent paper, Elliott et al. (J. Mech. Phys. Solids, in press) proposed a nano-mechanical model based on temperature-dependent atomic potentials to explicitly construct an energy density W ðF; hÞ to find all the different equilibrium paths and their stability of a stress-free bi-atomic perfect crystal as a function of temperature. In this work we investigate the influence of hydrostatic pressure. In general, hydrostatic compression increases the critical temperatures on the principal branches. For the same absolute value, hydrostatic tension is found to have a more pronounced effect on the equilibrium paths than hydrostatic compression. 2002 Elsevier Science Ltd. All rights reserved.
منابع مشابه
Stability of thermally-induced martensitic transformations in bi-atomic crystals
Some of the most interesting, and technologically important solid–solid transformations are the 1rst order di2usionless transformations that occur in certain equiatomic, ordered, bi-atomic crystals. These displacive transformations include thermally-induced, reversible, proper martensitic transformations as seen in shape memory alloys such as NiTi (where group–subgroup relationships exist betwe...
متن کاملCasson Fluid Flow with Variable Viscosity and Thermal Conductivity along Exponentially Stretching Sheet Embedded in a Thermally Stratified Medium with Exponentially Heat Generation
The motion of temperature dependent viscosity and thermal conductivity of steady incompressible laminar free convective (MHD) non-Newtonian Casson fluid flow over an exponentially stretching surface embedded in a thermally stratified medium are investigated. It is assumed that natural convection is induced by buoyancy and exponentially decaying internal heat generation across the space. The dim...
متن کاملGlobal Stability for Thermal Convection in a Couple Stress Fluid Saturating a Porous Medium with Temperature-Pressure Dependent Viscosity: Galerkin Method
A global nonlinear stability analysis is performed for a couple-stress fluid layer heated from below saturating a porous medium with temperature-pressure dependent viscosity for different conducting boundary systems. Here, the global nonlinear stability threshold for convection is exactly the same as the linear instability boundary. This optimal result is important because it shows that lineari...
متن کاملEquilibrium Path-following, Bifurcation, and Stability Techniques for Studying Temperature-Induced and Stress-Induced Martensitic Transformations in Crystalline Shape Memory Alloys
Some of the most interesting and technologically important solid-solid transformations are the first-order diffusionless (martensitic) transformations that occur in certain ordered multi-atomic crystals. These include the reconstructive martensitic transformations, where no group-subgroup symmetry relationship exists between the phases, found in steel and ionic compounds such as CsCl. Additiona...
متن کاملAngular distortive matrices of phase transitions in the fcc-bcc-hcp system
This work generalizes the one-step model previously developed on fccbcc martensitic transformations to the larger family of phase transitions in the fcc-bcc-hcp system. The angular distortive matrices are calculated for the bccfcc, bcchcp and fcchcp transitions, and for fccfcc mechanical twinning. The analytical expressions of the continuous atomic displacements, lattice distortion and lat...
متن کامل